3rd International Symposium on Search Based Software Engineering
September 10 - 12,
Szeged, Hungary

An
Approach to the Software

Release Planning Problem
with Dependent Requirements

Jerffeson Teixeira de Souza, Camila Loiola Brito Maia,
Thiago do Nascimento Ferreira, Rafael Augusto Ferreira do
Carmo and Marcia Maria Albuquerque Brasil

Optimization in Software Engineering Group (GOES.UECE)
State University of Ceara, Brazil

Motivation

The Search Based Software Engineering (SBSE) field
has been benefited from a number of general
search methodes.

Surprisingly, even with the large applicability and
the significant results obtained by the

, very little has
been done regarding the employment of this
strategy to tackle software engineering problems
modeled as optimization problems.

Ant Colony Optimization

“swarm intelligence framework, inspired by
the behavior of ants during
food search in nature.”

“ACO mimics the indirect
communication strateqgy
employed by real ants mediated
by pheromone trails, allowing
individual ants to adapt their
behavior to reflect the colony’s
search experience.”

{4

The
addresses the selection
and assignment of requirements
to a sequence of releases, such
that the and
requirements are
anticipated, and both cost and
precedence constraints are met.

/" The addresses
the selection and assignment of requirements to a

sequence of releases, such that the
and requirements are anticipated, and both
cost and precedence constraints are met.))

Maximize Y (score;.(P — x; + 1) — risk;.x;).y;

score; = yzle.importance(cj,ri) '

/" The addresses
the selection and assignment of requirements to a

sequence of releases, such that the

, and both
cost and precedence constraints are met.))

/" The addresses
the selection and assignment of requirements to a

sequence of releases, such that the
and requirements are anticipated, and both
are met.))

x, < x,,Y(r, — 1,),Wwherer,, 1, €R '

ﬁvzl cost;. fi . < budgetReleasey, for allk € {1,...,P}

ACO framework
Software Release Planning problem

ACO for the Software Release Planning problem

compare
to other metaheuristics Software
Release Planning problem

ACO versus Other Metaheuristics

How can the ACO algorithm be adapted to
solve the Software Release Planning
problem in the presence of dependent
requirements?

THE ACO ALGORITHM

PROBLEM ENCONDING

The problem will be encoded as a directed graph,

G =(V,E), where £ =E, +E; |, with En|
representing mandatory moves,

and £, [representing optional ones.

i. each vertex in V |represents a requirement 'i| ;

ii. a directed mandatory edge (737) € Em', if (7 — rj)' ;
iii. a directed optional edge (77,77) € Eo', if (177) € Em'and L #]'{' .

MORE

PROBLEM ENCONDING

if requirement _ has no precedent

overall_cost; = cost; i)
TEqUITEIentS overall_cost; = cost; +), overall_costj'
and - f=r all
J | (r; = 7}')’

unvisited requirements where

mand_vis, (i) = {rj|(r;1r;) € E,,, and visited; = False}

opt_visy (i) = {rj|(ryr;) € E,, ef for(k) + overall_cost; <
budgetRelease, and visited; = False}

OVERALL INITIALIZATION
COUNT <1

MAIN LOOP
REPEAT

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT <1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION

SINGLE RELEASE PLANNING LOOP

MAIN LOOP FINALIZATION

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT <1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices r; € V, visited, < False

FOR ALL vertices r; € V, current_planning. < 0
SINGLE RELEASE PLANNING LOOP

MAIN LOOP FINALIZATION

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT <1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices r; € V, visited, &< False

FOR ALL vertices r; € V, current_planning. < 0
SINGLE RELEASE PLANNING LOOP

// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

OVERALL INITIALIZATION
COUNT <1

MAIN LOOP
REPEAT

MAIN LOOP INITIALIZATION
FOR ALL vertices r; € V, visited, &< False

FOR ALL vertices r; € V, current_planning. < 0
SINGLE RELEASE PLANNING LOOP

// FINDS A NEW RELEASE PLANNING (current_planning)

MAIN LOOP FINALIZATION

IF current_planning.eval() > best_planning.eval() THEN
best_planning & current_planning

COUNT ++
UNTIL COUNT > MAX_COUNT

RETURN best_planning

SINGLE RELEASE PLANNING LOOP

FOR EACH Release, k
Randomly place ant k in a vertex r; € V, where

visited; & False and overall_cost; < budgetRelease,
ADDS (r;, k)
WHILE opt_vis,(i) = 0 DO
Move ant k to a vertex r; € opt_vis,(i) with
probability p; ¥
ADDS (r;, k)
[< |

// Besides r; adds to release k all of its dependent requirements, and,
repeatedly, their dependent requirements

ADDS (r;, k)

ENQUEUE (Q, r;)

WHILE Q = <& DO
r, < DEQUEUE (Q)
FOR EACH r, < € mand_vis,(s) DO

ENQUEUE (Q, r,)

visited, < True
current_planning < k

SINGLE RELEASE PLANNING LOOP

FOR EACH Release, k
Randomly place ant k in a vertex r; € V, where
visited; & False and overall_cost; < budgetRelease,

ADDS (r;, k)

WHILE opt_vis,(i) = 0 DO
Move ant k to a vertex r; € opt_vis,(i) with
probability p; ¢
ADDS (r;, k)
< j

EXPERIMENTAL EVALUATION

RESULTS AND ANALYSES

How does the proposed ACO adaptation compare to
other metaheuristics in solving the Software Release
Planning problem in the presence of dependent
requirements?

The Experimental Data

Table below presents the
and of a sample of the 72 synthetlcally generated
instances used in the experiments.

Instance Instance Features

Name Number of Number of Number of Precedence Overall
Requirements Releases Clients Density Budget

1 50.5.5.80 50 5 5 0% 80%

|_50.5.5.120 50 5 5 0% 120%

|_200.50.20.20.80 200 50 20 20% 80%

1_500.50.20.20.120 500 50 20 20% 120%

The Algorithms

Genetic Algorithm (GA)

widely applied evolutionary algorithm, inspired
by Darwin’s theory of natural selection, which
simulates biological processes such as
Inheritance, mutation, crossover, and selection

Simulated Annealing (SA)

it is a procedure for solving arbitrary optimization

problems based on an analogy with the annealing
process in solids.

Comparison Metrics

Quality

it relates to the quality of each

generated solution, measured by
the value of the objective function.

Execution Time

it measures the required execution
time of each strategy.

0 PAPER SUPPORTING MATERIAL

WEBPAGE

http://www.larces.uece.br/~goes/rp/aco/

-
Results

ACO performed better than GA and SA

Percentagewise, ACO generated solutions, in average,
better than those produced by GA and than SA.

In terms of execution time, ACO operated

than the other two metaheuristics. In average, ACO required
almost more than GA and more than more than
SA.

Instances in which when comparing the

quality of the solutions generated by ACO with GA and SA, with
, calculated with the Wilcoxon Ranked Sum Test

90% confidence level 95% confidence level 99% confidence level

1 50.5.5.20.80,1 50.5.20.0.80,

1 50.5.5.20.80, I 50.5.20.0.80, I 50.5.5.20.80, 1 50.5.20.0.80 1 50.20.20.0.120,1_50.20.20.20.80,

1 50.20.20.0.120,1 50.20.20.20.80, 1 50.20.20.0.120,1 50.20.20.20.80, 1 200.5.20.0.80,I 200.5.20.0.120,
GA 172005200580.1 200.520.0.120, 1 200.5.20.0.80,1_200.5.20.0.120, 1 200.50.20.0.80,1 500.5.5.0.80,

1 500.5.5.0.80,1 500.5.20.0.80 1 500.5.5.0.80,1 500.5.20.0.80 1 500.5.20.0.80,I 500.5.20.0.120,

I 500.20.20.0.80

Only -out of 72 -,
under the 95% confidence level when comparing ACO with GA.

For SA, even within the 99% level, ACO performed

ACO (1k) x GA (1k) x SA (1k) (Statistical Analyses)

Results

The ACO algorithm did
instances.

The exact occurred with SA, which outperformed
ACO over the same 3 instances.

ACO was still than GA and SA. This time,
however, ACO performed around

Instances in which when comparing the
quality of the solutions generated by ACO with GA and SA, with

, and , when ACO
performed better, calculated with the Wilcoxon Ranked Sum Test

90% confidence level 95% confidence level 99% confidence level

1 50.5.5.20.80,1 50.5.5.20.120,
1 50.5.5.20.120,1 50.20.5.0.120, 1 50.5.20.20.80,1 50.20.5.0.120,
1 50.20.20.0.80,1 50.20.20.20.80, 1 50.20.5.20.120,1 50.20.20.0.80,
1 50.50.20.0.120,1 50.50.20.20.120, 1 50.20.20.20.80,1 50.50.5.20.120,
1 200.5.20.0.120,] 200.5.20.20.80, 1 50.50.20.0.120,I 50.50.20.20.120,
1 200.50.20.0.80,1 500.5.5.0.120, 1 200.5.20.0.120,1 200.5.20.20.80,
1 500.5.20.0.80 1 200.50.20.0.80,1 500.5.5.0.80,

1 500.5.5.0.120,1_500.5.20.0.80

I 50.20.5.0.120,I 50.20.20.0.80,

I 50.20.20.20.80,I 50.50.20.0.120,
GA I 50.50.20.20.120,I 200.5.20.0.120,

I 200.5.20.20.80,I 200.50.20.0.80,

I 500.5.5.0.120,1 500.5.20.0.80

SA I 50.5.20.20.120,1 500.5.20.0.80 I 50.5.20.20.120,1 500.5.20.0.80 I 50.5.20.20.80,I _50.5.20.20.120

Considering a confidence level of 95%, GA and SA had, respectively,

where they were able to produce solutions.

ACO (1k) x GA (10k) x SA (10k) (Statistical Analyses)

Results

Even with the , ACO continues to
GA and SA, respectively,

(Pearson, Kendall and Spearman) over the results

generated by ACO before and after the time restriction.

Pearson Kendall Spearman

Correlation Correlation Correlation
ACO (1k) vs ACO - Time GA (1k) 0.9999907 0.9929577 0.9993890
ACO (1k) vs ACO -Time SA (1k) 0.9999879 0.9866980 0.9987137

of its capacity when subjected to such time constraints.

When performing better, GA

ACO (95% confidence level).

Over all other cases, under the 95% level, ACO did :
Considering SA, ACO this algorithm :

ACO (Restricted Time) x GA (1k) x SA (1k)
(Statistical Analyses)

Threats to Validity

» Artificial instances
Parameterization of
algorithms

Very little has been done regarding the employment of the Ant
Colony Optimization (ACO) framework to tackle software
engineering problems modeled as optimization problems.

This paper describes a novel ACO-based approach for the
Software Release Planning problem with the presence of
dependent requirement.

All experimental results pointed out to the ability of the

proposed ACO approach to generate precise solutions with
very little computational effort.

CONCLUSIONS

ANNOUNCEMENT

Il Brazilian Workshop on
Search Based Software
Engineering

along with
XXV Brazilian Symposium on Software Engineering (SBES 2011)
XV Brazilian Symposium on Programming Languages (SBLP 2011)
XIV Brazilian Symposium on Formal Methods (SBMF 2011)
V Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS 2011)
SAO PAULO - SP, BRAZIL
SEPTEMBER 26, 2011
http://www.compose.ufpb.br/wesb2011/

That is it!

Thanks for your time and attention.

